4.4 Article

Single-mode laser emission at 825 nm from a photopumped cylindrical microresonator based on a polymer semiconductor

出版社

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.27.002014

关键词

-

类别

向作者/读者索取更多资源

A near-infrared-emitting microlaser has been demonstrated, which is based on a semiconducting non-conjugated polymer. A luminescent polymer layer is formed on a silica optical fiber 125 mu m in diameter by self-assembly with poly(9-vinylcarbazole) containing an electron-transport material, 2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole, and a near-infrared-emitting compound, 2-(6-(p-dimethylaminophenyl)-2,4-neopentylene-1,3,5-hexatrienyl)-3-ethylbenzothiazolium perchlorate. The cylindrical polymer microcavity shows laser emission at 825 nm when it is transversally photopumped at 532 nm with a nanosecond Nd:yttrium aluminum garnet laser. The resonance of the microcavity is characterized by a cavity quality factor Q =(2.7 +/- 0.1) x 10(3), which is determined from the laser spectral width. Furthermore, a threshold analysis is carried out by taking into account the effects of the ground-state absorption of the chromophore and Rayleigh scattering of the gain medium. The analysis shows that the minimum threshold lies in the vicinity of 824 nm, which is consistent with the experimentally observed laser emission line at 825 nm. (C) 2010 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据