4.6 Article

Improved terahertz modulation using germanium telluride (GeTe) chalcogenide thin films

期刊

APPLIED PHYSICS LETTERS
卷 107, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4927272

关键词

-

向作者/读者索取更多资源

We demonstrate improved terahertz (THz) modulation using thermally crystallized germanium telluride (GeTe) thin films. GeTe is a chalcogenide material that exhibits a nonvolatile, amorphous to crystalline phase change at approximately 200 degrees C, as well as six orders of magnitude decreased electrical resistivity. In this study, amorphous GeTe thin films were sputtered on sapphire substrates and then tested using THz time-domain spectroscopy (THz-TDS). The test samples, heated in-situ while collecting THz-TDS measurements, exhibited a gradual absorbance increase, an abrupt nonvolatile reduction at the transition temperature, followed by another gradual increase in absorbance. The transition temperature was verified by conducting similar thermal tests while monitoring electrical resistivity. THz transmittance modulation data were investigated between 10 and 110 cm(-1) (0.3-3.3 THz). A peak modulation of approximately 99% was achieved at 2.3 THz with a 100 nm GeTe film on a sapphire substrate. After isolating the sapphire and the crystalline GeTe (c-GeTe) absorbance contributions, the results showed THz modulations ranging from 88.5% to 91.5% that were attributed solely to the single layer of transitioned c-GeTe. These results strongly motivate using GeTe or other chalcogenide thin films in THz modulators, filters, and metamaterial applications. (C) 2015 Author(s).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据