4.1 Article

A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3-Model Description and Basic Performance

期刊

出版社

METEOROLOGICAL SOC JAPAN
DOI: 10.2151/jmsj.2012-A02

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
  2. JMA
  3. Grants-in-Aid for Scientific Research [23221004] Funding Source: KAKEN

向作者/读者索取更多资源

A new global climate model, MRI-CGCM3, has been developed at the Meteorological Research Institute (MRI). This model is an overall upgrade of MRI's former climate model MRI-CGCM2 series. MRI-CGCM3 is composed of atmosphere-land, aerosol, and ocean-ice models, and is a subset of the MRI's earth system model MRI-ESMI. Atmospheric component MRI-AGCM3 is interactively coupled with aerosol model to represent direct and indirect effects of aerosols with a new cloud microphysics scheme. Basic experiments for pre-industrial control, historical and climate sensitivity are performed with MRI-CGCM3. In the pre-industrial control experiment, the model exhibits very stable behavior without climatic drifts, at least in the radiation budget, the temperature near the surface and the major indices of ocean circulations. The sea surface temperature (SST) drift is sufficiently small, while there is a 1 W m(-2) heating imbalance at the surface. The model's climate sensitivity is estimated to be 2.11 K with Gregory's method. The transient climate response (TCR) to 1 % yr(-1) increase of carbon dioxide (CO2) concentration is 1.6 K with doubling of CO2 concentration and 4.1 K with quadrupling of CO2 concentration. The simulated present-day mean climate in the historical experiment is evaluated by comparison with observations, including reanalysis. The model reproduces the overall mean climate, including seasonal variation in various aspects in the atmosphere and the oceans. Variability in the simulated climate is also evaluated and is found to be realistic, including El Nino and Southern Oscillation and the Arctic and Antarctic oscillations. However, some important issues are identified. The simulated SST indicates generally cold bias in the Northern Hemisphere (NH) and warm bias in the Southern Hemisphere (SH), and the simulated sea ice expands excessively in the North Atlantic in winter. A double ITCZ also appears in the tropical Pacific, particularly in the austral summer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据