4.7 Article

A multi-field incremental variational framework for gradient-extended standard dissipative solids

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2010.11.001

关键词

Variational principles; Size effects; Phase field models; Gradient damage; Strain gradient plasticity

资金

  1. German Research Foundation (DFG) [Mi 295/10-1]
  2. Fabian Welschinger

向作者/读者索取更多资源

The paper presents a constitutive framework for solids with dissipative micro-structures based on compact variational statements. It develops incremental minimization and saddle point principles for a class of gradient-type dissipative materials which incorporate micro-structural fields (micro-displacements, order parameters, or generalized internal variables), whose gradients enter the energy storage and dissipation functions. In contrast to classical local continuum approaches to inelastic solids based on locally evolving internal variables, these global micro-structural fields are governed by additional balance equations including micro-structural boundary conditions. They describe changes of the substructure of the material which evolve relatively to the material as a whole. Typical examples are theories of phase field evolution, gradient damage, or strain gradient plasticity. Such models incorporate non-local effects based on length scales, which reflect properties of the material micro-structure. We outline a unified framework for the broad class of first-order gradient-type standard dissipative solids. Particular emphasis is put on alternative multi-field representations, where both the microstructural variable itself as well as its dual driving force are present. These three-field settings are suitable for models with threshold- or yield-functions formulated in the space of the driving forces. It is shown that the coupled macro- and micro-balances follow in a natural way as the Euler equations of minimization and saddle point principles, which are based on properly defined incremental potentials. These multi-field potential functionals are outlined in both a continuous rate formulation and a time-space-discrete incremental setting. The inherent symmetry of the proposed multi-field formulations is an attractive feature with regard to their numerical implementation. The unified character of the framework is demonstrated by a spectrum of model problems, which covers phase field models and formulations of gradient damage and plasticity. (C) 2011 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据