4.7 Article

Thermomechanical modeling of the thermo-order-mechanical coupling behaviors in liquid crystal elastomers

期刊

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
卷 58, 期 11, 页码 1907-1927

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2010.07.019

关键词

Liquid crystal elastomer; Multi-field coupling; Thermomechanical process; Phase transformation

资金

  1. National Natural Science Foundation of China [10672042, 10772049]
  2. Research and Development Program of China (863 Program) [2009AA04Z408]

向作者/读者索取更多资源

Liquid crystal elastomer is a kind of anisotropic polymeric material, with complicated micro-structures and thermo-order-mechanical coupling behaviors. In this paper, we propose a method to systematically model these coupling behaviors. We derive the constitutive model in full tensor structure according to the Clausius-Duhem inequality. Two of the constitutive equations represent the mechanical equilibrium and the other two represent the phase equilibrium. Choosing the total free energy as the combination of the neo-classical free energy and the Landau-de Gennes nematic free energy, we obtain the Cauchy stress-deformation gradient relation and the order-mechanical coupling equations. We find the analytical homogeneous solutions of the deformation for the typical mechanical loadings, such as uniaxial stretch, and simple shear in any directions. We also compare the compression behavior of prolate liquid crystal elastomers with the stretch behavior of oblate liquid crystal elastomers. As a result, the stress, strain, temperature, order parameter, biaxiality and the direction of the director of liquid crystal elastomers couple with each other. When the prolate liquid crystal elastomer sample is stretched in the direction parallel to its director, the deviatoric stress makes the mesogens more order and increase the transition temperature. When the sample is sheared or stretched in the direction non-parallel to the director, the director of the liquid crystal elastomer will rotate, and the biaxiality will be induced. Because of the order-mechanical coupling, under infinitesimal deformation, liquid crystal elastomer has anisotropic Young's modulus and zero shear modulus in the direction parallel or perpendicular to the director. While for the oblate liquid crystal elastomers, the stretch parallel to the director will cause the rotation of the director and induce the biaxiality. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据