4.7 Article

Laws of crack motion and phase-field models of fracture

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2008.10.012

关键词

Fracture; Phase field; Anisotropy; Eshelby tensor; Herring torque

向作者/读者索取更多资源

Recently proposed phase-field models offer self-consistent descriptions of brittle fracture. Here, we analyze these theories in the quasistatic regime of crack propagation. We show how to derive the laws of crack motion either by using solvability conditions in a perturbative treatment for slight departure from the Griffith threshold or by generalizing the Eshelby tensor to phase-field models. The analysis provides a simple physical interpretation of the second component of the classic Eshelby integral in the limit of vanishing crack propagation velocity: it gives the elastic torque on the crack tip that is needed to balance the Herring torque arising from the anisotropic surface energy. This force-balance condition can be interpreted physically based on energetic considerations in the traditional framework of continuum fracture mechanics, in support of its general validity for real systems beyond the scope of phase-field models. The obtained law of crack motion reduces in the quasistatic limit to the principle of local symmetry in isotropic media and to the principle of maximum energy-release-rate for smooth curvilinear cracks in anisotropic media. Analytical predictions of crack paths in anisotropic media are validated by numerical simulations. interestingly, for kinked cracks in anisotropic media, force-balance gives significantly different predictions from the principle of maximum energy-release-rate and the difference between the two criteria can be numerically tested. Simulations also show that predictions obtained from force-balance hold even if the phase-field dynamics is modified to make the failure process irreversible. Finally, the role of dissipative forces on the process zone scale as well as the extension of the results to motion of planar cracks under pure antiplane shear are discussed. (c) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据