4.7 Article

Numerical simulations of stress generation and evolution in Volmer-Weber thin films

期刊

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
卷 56, 期 8, 页码 2727-2747

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2008.02.008

关键词

Volmer-Weber growth; thin film stress; cohesive zone; finite element analysis

向作者/读者索取更多资源

We present a detailed model of the stresses and shape changes that occur in polycrystalline thin films during Volmer-Weber growth. Our model tracks the shape of an array of islands as they grow and coalesce into a continuous film. The islands change shape as a result of the deposition flux, as well as surface and grain boundary diffusion. Stress is generated in the film as a result of forces exerted between neighboring islands as they meet to form a grain boundary. The internal stresses in the islands and the diffusive changes on their surfaces and grain boundaries are computed using a coupled finite element scheme. Interactions between neighboring islands are modeled using a cohesive zone law. Our model predicts stress-thickness vs. thickness behavior that is in excellent agreement with experiments. Specifically, we observe a three-stage growth process consisting of a stress-free pre-coalescence stage, a rapid tensile rise at coalescence, and an eventual transition to a steady-state. The steady-state stress may be tensile or compressive, depending on the deposition rate, the grain size, and the properties of the film. Detailed parametric studies are conducted to establish the influence of material properties and growth conditions on the stress history, and the results are compared with experimental observations and previous models. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据