4.6 Article

Computational study of structural, elastic and electronic properties of lithium disilicate (Li2Si2O5) glass-ceramic

出版社

ELSEVIER
DOI: 10.1016/j.jmbbm.2013.10.029

关键词

Glass-ceramics; Lithium disilicate crystal; Structural properties; Elastic properties; Electronic properties

向作者/读者索取更多资源

The objective of this study is to investigate theoretically the structural, elastic and electronic properties of Lithium Disilicate (LD) crystal (Li2Si2O5), using the pseudo potential method based on Density Functional Theory (DFT) with the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). The calculated structural properties namely the equilibrium lattice parameters and cell volume are in good agreement with the available experimental results. However, for the LD crystal elastic moduli: Shear modulus G, Young's modulus E and Poisson's ratio nu we have found a discrepancy between our theoretical values and experimental ones reported in polycrystalline sample containing LD crystals. The calculated elastic properties show that LD is more rigid compared with other components. We also investigated the mechanical stability of Li2Si2O5 compound and we have noticed that this compound is stable against elastic deformations. On the basis of shear to bulk modulus ratio analysis, we inferred that Li2Si2O5 compound is brittle in nature. In order to complete the fundamental characteristics of this compound we have measured the elastic anisotropy. Our results for the energy band structure and Density of States (DOS) show that Li2Si(2)O(5) compound has an insulator characteristic. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据