4.6 Article

Substrate elasticity controls cell proliferation, surface marker expression and motile phenotype in amniotic fluid-derived stem cells

出版社

ELSEVIER
DOI: 10.1016/j.jmbbm.2012.10.001

关键词

Elastic modulus; Amniotic fluid-derived stem cells; Biomaterial; Cell therapy; Cell mobility

资金

  1. NIH NIBIB Grant [R01EB008009]
  2. NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING [R01EB008009] Funding Source: NIH RePORTER

向作者/读者索取更多资源

The physical cues presented to stem cells by the substrate on or in which they exist have been shown to play a crucial role in regulation of their behavior. Until recently, most research has focused on the effects of substrate elasticity on differentiation capability rather than maintenance of long-term proliferation and plasticity. The main goal of the present study is to study the interaction of amniotic fluid-derived stem (AFS) cells with growth substrata of different elasticity, which may extend their application potentials. Here, we investigate the effects of elastic modulus (E'), on AFS cell proliferation, morphology, cell surface marker expression, and autocrine stimulation of cell migration. AFS cells cultured on substrates of different E' exhibited significant changes in proliferation and morphology. Immunohistochemistry revealed increased expression of cell surface markers associated with mesenchymal stem cells (MSCs) (CD44, CD90, CD105, and N-cadherin) in cells cultured on softer substrates. Additionally, AFS cells cultured on softer substrates induced autocrine stimulation of migration. Therefore, tailoring the elastic modulus of biomaterials to specific stiffness values is an effective method to control stem cell properties, which may modulate the effectiveness of their therapeutic applications. (c) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据