4.6 Article

Synthesis, microstructure and mechanical properties of porous Mg-Zn scaffolds

出版社

ELSEVIER
DOI: 10.1016/j.jmbbm.2013.01.023

关键词

Magnesium; Zinc; Porous materials; Porosity; Mechanical properties; Sintering

向作者/读者索取更多资源

Magnesium alloys have been intensively studied as biodegradable implant materials, as their mechanical properties render them promising candidates for bone tissue engineering applications. In the present work, porous Mg-4 wt% Zn and Mg-6 wt% Zn scaffolds were prepared using a powder metallurgy process. The effects of the porosity and Zn content on the microstructure and the mechanical properties of the fabricated scaffolds were studied. The above mentioned fabrication process involved sequential stages of mixing and compression of Mg and Zn powders with carbamide materials as space-holder particles followed by sintering the green compacts at different temperatures below the melting point of Mg. The results indicate that the porous Mg-Zn specimens with a porosity and pore size of approximately 21-36% and 150-400 mu m, respectively, could have enhanced mechanical properties comparable with those of cancellous bone. In addition, an increase in the amount of Zn in the applied alloy gives rise to a significant refinement of magnesium grain size and an improvement in the mechanical properties, such as the compression strength, of the porous Mg-Zn specimens. Furthermore, according to the results, the porous Mg-Zn alloy could be considered one of the most promising scaffold materials for hard tissue regeneration. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据