4.6 Article

Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmbbm.2013.03.020

关键词

-

向作者/读者索取更多资源

The inelastic deformability of the mineralised matrix in bones is critical to their high toughness, but the nanoscale mechanisms are incompletely understood. Antler is a tough bone type, with a nanostructure composed of mineralised collagen fibrils similar to 100 nm diameter. We track the fibrillar deformation of antler tissue during cyclic loading using in situ synchrotron small-angle X-ray diffraction (SAXD), finding that residual strain remains in the fibrils after the load was removed. During repeated unloading/reloading cycles, the fibril strain shows minimal hysteresis when plotted as a function of tissue strain, indicating that permanent plastic strain accumulates inside the fibril. We model the tensile response of the mineralised collagen fibril by a two - level staggered model including both elastic - and inelastic regimes - with debonding between mineral and collagen within fibrils triggering macroscopic inelasticity. In the model, the subsequent frictional sliding at intrafibrillar mineral/collagen interfaces accounts for subsequent inelastic deformation of the tissue in tension. The model is compared to experimental measurements of fibrillar and mineral platelet strain during tensile deformation, measured by in situ synchrotron SAXD and wide-angle X-ray diffraction (WAXD) respectively, as well as macroscopic tissue stress and strain. By fitting the model predictions to experimentally observed parameters like the yield point, elastic modulus and post-yield slope, extremely good agreement is found between the model and experimental data at both the macroand at the nanoscale. Our results provide strong evidence that intrafibrillar sliding between mineral and collagen leads to permanent plastic strain at both the fibril and the tissue level, and that the energy thus dissipated is a significant factor behind the high toughness of antler bone. (c) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据