4.6 Article

Platelets self-assemble into porous nacre during freeze casting

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmbbm.2012.10.013

关键词

Composites; Porosity; Structural hierarchy; Ice-templating; Biomimetics

资金

  1. DOE [DE-AC07-05ID14517 (NEUP 10-848)]
  2. NIH-NIDCR [1R01DE015633]
  3. GAANN Fellowship [P200A070496]
  4. NSF-IGERT [0654313]
  5. Division Of Graduate Education
  6. Direct For Education and Human Resources [0654313] Funding Source: National Science Foundation

向作者/读者索取更多资源

Nacre possesses a remarkable combination of mechanical properties. Its high stiffness, strength and toughness are attributed to a highly aligned structure of aragonite platelets glued together by a small fraction (similar to 5 vol%) of polymer; theoretically it can be described by a shear-lag model of staggered tensile elements between which loads are transferred via shear. Despite extensive research, it has not been possible yet to manufacture this aligned structure as a bulk material of considerable volume with a fast and easy production process. Particularly porous materials would benefit from enhanced wall material properties to compensate for performance loss due to their high porosity. An important application for such porous materials are tissue scaffolds for bone substitution. Bone, like nacre, exhibits excellent mechanical properties, particularly an exceptionally high toughness, because of its composite structure of hydroxyapatite platelets aligned in a similar to 35 vol% polymer matrix. Through the freeze casting process, which results in a fast and straightforward self-assembly of platelet-shaped particles during directional solidification, highly porous bulk materials with nacre-like cell walls can now be created. This porous. nacre outperforms by a factor of 1.5-4 in terms of stiffness, strength and toughness materials that have the same amount of porosity but do not exhibit the nacre-like microarchitecture. The self-assembly process presented in this study thus has tremendous potential for the creation of highly porous, yet mechanically strong tissue scaffolds for low or medium load bearing bone substitute materials. Due to the versatility of the freeze casting process, materials with a self-assembled cell wall structure can be created from high-aspect ratio particles of all material classes. This enables material optimization for a great variety of applications such as impact protection, filtration, catalysis, energy generation and storage, in addition to those with excellent mechanical properties at high porosity. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据