4.6 Article

Investigation of microstructure, mechanical properties and cellular viability of poly(L-lactic acid) tissue engineering scaffolds prepared by different thermally induced phase separation protocols

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmbbm.2012.08.021

关键词

Poly(L-lactic acid); Thermally induced phase separation; Tissue engineering; Mechanical properties; Microstructure; Cell viability

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

Two thermally induced phase separation (TIPS) methods have been used to fabricate biodegradable poly(L-lactic acid) (PLLA) tissue engineering scaffolds each with fibrous (F-TIPS) and porous (P-TIPS) microstructures. Three levels of PLLA concentration (3, 5 and 7 wt%) were employed in each fabrication method and both wet and dry specimens were studied. Simple compression testing revealed that an elastic-plastic representation of the mechanical behavior was possible for all specimens. Both elastic and plastic moduli were higher for the P-TIPS, for higher polymer concentration, and might be somewhat higher for dry as opposed to wet specimens. For F-TIPS specimens, permanent deformation occurred successively during cyclic deformation but a memory effect simplified the behavior. Although F-TIPS microstructure better resembled the natural extracellular matrix, human osteosarcoma fibroblast cells showed more consistent viability in the P-TIPS scaffolds under our unloaded test protocols. Biodegradation in cell culture medium resulted in a decreased elastic moduli for F-TIPS specimens. Information presented regarding the microstructure, mechanical properties and cell viability of these PLLA scaffolds that should help reduce the number of iterations involved in developing tissue engineering products. (c) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据