4.6 Article

Structural and mechanical multi-scale characterization of white New-Zealand rabbit Achilles tendon

出版社

ELSEVIER
DOI: 10.1016/j.jmbbm.2013.05.028

关键词

Biological materials; Atomic-force microscopy; Second harmonic generation; Structure property relationships; Modeling

向作者/读者索取更多资源

Multi-scale characterization of structures and mechanical behavior of biological tissues are of huge importance in order to evaluate the quality of a biological tissue and/or to provide bio-inspired scaffold for functional tissue engineering. Indeed, the more information on main biological tissue structures we get, the more relevant we will be to design new functional prostheses for regenerative medicine or to accurately evaluate tissues. From this perspective, we have investigated the structures and their mechanical properties from nanoscopic to macroscopic scale of fresh ex-vivo white New-Zealand rabbit Achilles tendon using second harmonic generation (SHG) microscopy, atomic force microscopy (AFM) and tensile tests to provide a simple model whose parameters are relevant of its micro or nano structure. Thus, collagen fiber's crimping was identified then measured from SHG images as a plane sine wave with 28.4 +/- 5.8 mu m of amplitude and 141 +/- 41 mu m of wavelength. Young's moduli of fibrils (3.0 GPa) and amorphous phases (223 MPa) were obtained using TH-AFM. From these investigations, a non-linear Zener model linking a statistical Weibull's distribution of taut fibers under traction to crimp fibers were developed. This model showed that for small strain (<0.1), the amorphous inter-fibrils phase in collagen fibers is more solicited than collagen fibrils themselves. The results open the way to modeled macroscopic mechanical behavior of aligned-crimped collagen soft tissues using multi-scale tendon observations under static or dynamic solicitations. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据