4.6 Article

Mechanical characterization of a customized decellularized scaffold for vascular tissue engineering

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmbbm.2011.12.003

关键词

Tissue engineering; Decllularized artery; Vascular scaffold; Tensile properties

向作者/读者索取更多资源

Several challenges persist when attempting to utilize decellularized tissue as a scaffold for vascular tissue engineering. Namely: poor cell infiltration/migration, excessive culture times associated with repopulating the scaffolds, and the achievement of a quiescent medial layer. In an attempt to create an optimum vascular scaffold, we customized the properties of decellularized porcine carotid arteries by: (i) creating cavities within the medial layer to allow direct injection of cells, and (ii) controlling the amount of collagen digestion to increase the porosity. Histological examination of our customized scaffold revealed a highly porous tissue structure containing consistent medial cavities running longitudinally through the porous scaffold wall. Mechanical testing of the customized scaffold showed that our minimal localized disruption to the ECM does not have a detrimental effect on the bulk mechanical response of the tissue. The results demonstrate that an increased stiffness and reduced distensibility occurs after decellularization when compared to the native tissue, however post scaffold customization we can revert the scaffold tensile properties back to that of the native tissue. This most noteworthy result occurs in the elastin dominant phase of the tensile response of the scaffold, indicating that no disruption has occurred to the elastin network by our decellularization and customization techniques. Additionally, the bulk seeding potential of the customized scaffold was demonstrated by direct injection of human smooth muscle cells through the medial cavities. The optimum cell dispersion was observed in the highest porosity scaffold, with large cell numbers retained within the medial layer after 24 h static culture. In summary, this study presents a novel customized decellularized vascular scaffold that has the capability of bulk seeding the media, and in tandem to this method, the porosity of the scaffold has been increased without compromising the mechanical integrity. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据