4.6 Article

Improvement of mechanical properties and biocompatibility of forsterite bioceramic addressed to bone tissue engineering materials

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmbbm.2010.06.003

关键词

Forsterite; Two step sintering; Fracture toughness; Biocompatibility; Bone tissue engineering

资金

  1. Isfahan University of Technology

向作者/读者索取更多资源

This work deals with the fabrication and characterization of nanostructured forsterite bulk. This material may have better biocompatibility and mechanical properties than coarse grain forsterite for the development of bone tissue engineering materials. Nanostructured forsterite bulks were prepared by two step sintering of sol-gel derived forsterite nanopowder. Their sinterability and mechanical properties were then studied. Biocompatibility of the nanostructured forsterite bulk was also evaluated by cell attachment and proliferation experiments. In addition, the effects of ionic products from forsterite nanopowder dissolution on osteoblasts were studied. Results show that dense nanostructured forsterite bulk was prepared with hardness and fracture toughness of about 1102 Hv and 4.3 MPa m(1/2), respectively. Nanostructured forsterite was biocompatible and the MTT test confirmed that the products from forsterite nanopowder dissolution significantly promoted osteoblast proliferation within a certain concentration range. In addition, cells attached to and spread on the surface of nanostructured forsterite bulks. Mechanical properties of the nanostructured forsterite were much higher than that of hydroxyapatite. It was concluded that nanostructured forsterite is a bioactive ceramic with good biocompatibility that can be used as a bone tissue engineering material. (c) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据