4.5 Article

Reversible shape-memory properties of surface functionalizable, crystallizable crosslinked terpolymers

期刊

POLYMERS FOR ADVANCED TECHNOLOGIES
卷 26, 期 12, 页码 1421-1427

出版社

WILEY-BLACKWELL
DOI: 10.1002/pat.3702

关键词

multifunctional materials; terpolymer; reversible shape-memory effect; reversible actuation; surface functionalization

向作者/读者索取更多资源

There is a high demand for polymer actuators comprising reactive groups at their surface in biotechnological or bioanalytical devices especially in microfluidics. In this work, we explored whether a thermoplastic poly[ethylene-co-(ethyl acylate)-co-(maleic anhydride)] (PEEAMA) terpolymer can be converted to a multifunctional shape-memory actuator by introducing covalent netpoints. In crosslinked PEEAMA (cPEEAMA) crystalline polyethylene (PE) domains with melting temperatures below 70 degrees C should serve as actuation domains, responsible for the reversible shape change during cyclic heating and cooling, while higher melting PE crystals act as skeleton forming domains; finally maleic anhydride (MAH) groups enable surface modification of the polymeric substrate. cPEEAMAs with a fixed composition and various crosslink densities were prepared by thermally crosslinking of PEEAMA using different dicumyl peroxide (DCP) concentrations in the starting reaction mixture. A broad melting transition in the range of 50 to 90 degrees C with a melting temperature interval of Delta T-m = 40 degrees C, related to the crystalline PE domains, was observed for all polymer networks in differential scanning calorimetric experiments. Cyclic, thermomechanical uniaxial tensile tests revealed high reversible strains up to 17 +/- 2%. A reversible change in long period during repetitive heating and cooling was observed in in situ small angle X-ray scattering experiments. Finally, a successful functionalization of the MAH groups at the cPEEAMA surface by reaction with ethylene diamine was confirmed by infrared spectroscopy analysis. The presented amino functionalized cPEEAMA substrates could be a candidate material for the preparation of adaptive microfluidic devices. Copyright (C) 2015 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据