4.1 Article

Fabrication and analysis of PMMA, ABS, PS, and PC superhydrophobic surfaces using the spray method

期刊

JOURNAL OF THE KOREAN PHYSICAL SOCIETY
卷 63, 期 2, 页码 218-224

出版社

KOREAN PHYSICAL SOC
DOI: 10.3938/jkps.63.218

关键词

Spray method; Self-assembled monolayers; Superhydrophobic surface

资金

  1. Global Excellent Technology Innovation RD Program
  2. Ministry of Knowledge Economy, Republic of Korea

向作者/读者索取更多资源

In this study, superhydrophobic surfaces were fabricated using a facile spraying technique with poly(methyl methacrylate) (PMMA), acrylonitrile butadiene styrene (ABS), polystyrene (PS) and polycarbonate (PC). Also, the surface energy was qualitatively analyzed via the water contact angle with respect to the spraying time and the sprayed position. Firstly, PMMA, ABS, PS and PC were dissolved by using solvents such as methyl chloride, methanol, THF (tetrahydrofuran), and methanol, respectively. After that, the dissolved polymer was sprayed onto a thin film of the same polymer for various spraying times. Nozzle size, pressure and spraying distance were fixed as 0.2 mm, 0.1 bar, and 100 mm, respectively, after several feasibility experiments. For the sprayed surfaces, the topology was analyzed with scanning electron microscopy (SEM) and confocal microscopy, and the surface energy was qualitatively analyzed using the water-contactangle measurement. According to a quantitative analysis using the roughness factor and he Wenzel equation, all specimens could be assumed to be in a Wenzel state. To convert the Wenzel state into a Cassie-Baxster state by decreasing the surface energy of polymer-sprayed specimen, we treated the polymer-sprayed surfaces by using trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane. Consequently, non-sticky superhydrophobic surfaces having water contact angles greater than 155A degrees and water sliding angles lower than 8A degrees were fabricated. The water contact angle and the water sliding angle were measured by using a contact-angle-measuring device. In addition, a brief qualitative analysis of the effect of surface topology on the water sliding angle was conducted for the polymer-sprayed specimens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据