4.6 Article

Self-folding graphene-polymer bilayers

期刊

APPLIED PHYSICS LETTERS
卷 106, 期 20, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4921530

关键词

-

资金

  1. National Science Foundation [CMMI 1200241, CBET-1066898]
  2. Directorate For Engineering
  3. Div Of Civil, Mechanical, & Manufact Inn [1200241] Funding Source: National Science Foundation
  4. Div Of Chem, Bioeng, Env, & Transp Sys
  5. Directorate For Engineering [1066898] Funding Source: National Science Foundation

向作者/读者索取更多资源

In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据