4.4 Article

Neogene rock uplift and erosion in northern Borneo: evidence from the Kinabalu granite, Mount Kinabalu

期刊

JOURNAL OF THE GEOLOGICAL SOCIETY
卷 170, 期 5, 页码 805-816

出版社

GEOLOGICAL SOC PUBL HOUSE
DOI: 10.1144/jgs2011-130

关键词

-

资金

  1. SE Asia Research Group at Royal Holloway
  2. Australian Research Council (ARC) [DP0877274]
  3. Research School of Earth Sciences, Australian National University
  4. Australian Research Council [DP0877274] Funding Source: Australian Research Council

向作者/读者索取更多资源

Thermochronological data from the Kinabalu granite, emplaced between c. 7.2 and 7.8 Ma, provide a unique record of northern Borneo's exhumation during the Neogene. Biotite 40Ar/39Ar ages (c. 7.32-7.63 Ma) record rapid cooling of the granite in the Late Miocene as it equilibrated with ambient crustal temperatures. Zircon fission-track ages (c. 6.6-5.8 Ma) and apatite (U-Th-Sm)/He ages (central age c. 5.5 Ma) indicate rapid cooling during the Late Miocene-Early Pliocene. This cooling reflects exhumation of the granite, uplift and erosion bringing it closer to the Earth's surface. Thermochronological age versus elevation relationships suggest exhumation rates of more than 7 mm a(-1) during the latest Miocene and Early Pliocene. Neither the emplacement of the Kinabalu granite nor its exhumation is related to the Sabah orogeny, which terminated in the Early Miocene. Instead, granite magmatism was caused by extension related to subduction rollback of the Sulu Arc, and Mio-Pliocene exhumation of the Kinabalu granite was driven either by lithospheric delamination or break-off of a subducted slab beneath Sabah. Plio-Pleistocene tectonism offshore and onshore northern Borneo reflects continuing large-scale gravity-driven tectonics in the region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据