4.6 Article

Microstructure Evolution in Lithium-Ion Battery Electrode Processing

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 161, 期 8, 页码 E3248-E3258

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.026408jes

关键词

-

资金

  1. Texas AM University

向作者/读者索取更多资源

The processing induced active particle assembly determines the internal microstructure and resultant performance of the electrode in a lithium-ion battery. A morphology-detailed mesoscale model has been developed to gain fundamental understanding of the influence of active particle morphology, size, volume fraction, solvent evaporation, and multi-phase (active particle, conductive additive, binder and solvent) interaction. Our results demonstrate that smaller isometric active particles tend to form favorable aggregation with conductive additive particles. Two regimes, namely spontaneous aggregation and evaporation induced aggregation, have been identified. Low solvent evaporation rate promotes spontaneous aggregation resulting in an enhanced interfacial area than that in evaporation-induced aggregation. The influence of active material morphology and volume fraction on conducting pathway formation has been conjectured. (C) 2014 The Electrochemical Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据