4.6 Article

Unexpected Voltage Fade in LMR-NMC Oxides Cycled below the Activation Plateau

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 162, 期 1, 页码 A155-A161

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0741501jes

关键词

-

资金

  1. U.S. Department of Energy's Vehicle Technologies Program
  2. DOE Vehicle Technologies Program (VTP) within Applied Battery Research (ABR) for Transportation Program
  3. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
  4. U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]
  5. U.S. Government

向作者/读者索取更多资源

A common feature of lithium-excess layered oxides, nominally of composition xLi(2)MnO(3)center dot(1-x)LiMO2 (M = transition metal) is a high-voltage plateau (similar to 4.5 V vs. Li/Li+) in their capacity-voltage profile during the first delithiation cycle. This plateau is believed to result from activation of the Li2MnO3 component, which makes additional lithium available for electrochemical cycling. However, oxides cycled beyond this activation plateau are known to display voltage fade which is a continuous reduction in their equilibrium potential. In this article we show that these oxides display gradual voltage fade even on electrochemical cycling in voltage ranges well below the activation plateau. The average fade is similar to 0.08 mV-cycle(-1) for Li(1.2)Ni(0.1)5Mn(0.5)5Co(0.1)O(2) vs. Li cells after 20 cycles in the 2-4.1 V range at 55 degrees C; a similar to 54 mV voltage hysteresis, expressed as the difference in average cell voltage between charge and discharge cycles, is also observed. The voltage fade results from a gradual accumulation of local spinel environments in the crystal structure. Some of these spinel sites result from lithium deficiencies during oxide synthesis and are likely to be at the particle surfaces; other sites result from the migration of transition metal atoms in the partially-delithiated LiMO2 component into the lithium planes during electrochemical cycling. The observed rate of voltage fade depends on a combination of factors that includes the phase equilibrium between the layered and spinel components and the kinetics of transition metal migration. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据