4.6 Article

On Plastic Deformation and Fracture in Si Films during Electrochemical Lithiation/Delithiation Cycling

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 160, 期 10, 页码 A1885-A1893

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.098310jes

关键词

-

资金

  1. US Department of Energy through the DOE EPSCoR [DE-SC0007074]

向作者/读者索取更多资源

An in situ study of deformation, fracture, and fatigue behavior of silicon as a lithium-ion battery electrode material is presented. Thin films (100-200 nm) of silicon are cycled in a half-cell configuration with lithium metal foil as counter/reference electrode, with 1M lithium hexafluorophosphate in ethylene carbonate, diethylene carbonate, dimethyl carbonate solution (1:1:1, wt%) as electrolyte. Stress evolution in the Si thin-film electrodes during electrochemical lithiation and delithiation is measured by monitoring the substrate curvature using the multi-beam optical sensing method. The stress measurements have been corrected for contributions from residual stress arising from sputter-deposition. An indirect method for estimating the potential errors due to formation of the solid-electrolyte-interphase layer and surface charge on the stress measurements was presented. The films undergo extensive inelastic deformation during lithiation and delithiation. The peak compressive stress during lithiation was 1.48 GPa. The stress data along with the electron microscopy observations are used to estimate an upper bound fracture resistance of lithiated Si, which is approximately 9-11 J/m(2). Fracture initiation and crack density evolution as a function of cycle number is also reported. (C) 2013 The Electrochemical Society. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据