4.6 Article

Correlation between Battery Performance and Lithium Ion Diffusion in Glyme-Lithium Bis(trifluoromethanesulfonyl)amide Equimolar Complexes

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 159, 期 7, 页码 A1005-A1012

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.050207jes

关键词

-

资金

  1. Technology Research grant Program from the NEDO of Japan
  2. MEXT of Japan [452/17073009]
  3. ALCA program of the Japan Science and Technology Agency (JST)

向作者/读者索取更多资源

Li+ cation diffusion processes during electrochemical reactions in molten glyme-Li[TFSA] (TFSA: bis(trifluoromethanesulfonyl) amide) equimolar complexes were explored in detail. The correlation between the Li+ limiting current density under one-dimensional finite-diffusion conditions and rate capability of [Li metal foil vertical bar electrolyte vertical bar porous LiCoO2 cathode sheet] electrochemical cells was explored. The diffusion processes in the vicinity of LiCoO2 single particles were also studied using a microelectrode technique. Electrochemical properties of the particles in the electrolytes were characterized by using micrometer-sized particles in contact with a metal microfilament encapsulated in a glass capillary, under conditions where the Li+ cations around the particles could have spherical diffusion profiles. A comparison of the electrochemical behaviors of the LiCoO2 sheet and the single-particle electrode in a typical organic electrolyte (LiClO4 dissolved in propylene carbonate), in a binary ionic liquid (Li[TFSA] dissolved in N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis(trifluoromethanesulfonyl) amide), and in the molten complex ([Li(glyme)(1)][TFSA]) clearly revealed that the Li+ cation flux in the electrolytes dominates the rate capability of the cells using the porous LiCoO2 cathode sheet. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.050207jes] All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据