4.6 Article

Composite 'Layered-Layered-Spinel' Cathode Structures for Lithium-Ion Batteries

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 160, 期 1, 页码 A31-A38

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.049301jes

关键词

-

资金

  1. Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy
  2. Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]

向作者/读者索取更多资源

The concept of embedding a spinel component in high capacity, composite xLi(2)MnO(3)center dot(1-x)LiMO2 (M = Mn, Ni) 'layered-layered' structures to improve their electrochemical properties and cycling stability has been exploited. In this paper, we report the preparation and electrochemical characterization of three-component 'layered-layered-spinel' electrodes, synthesized by lowering the lithium content of a parent 'layered-layered' 0.3Li(2)MnO(3)center dot 0.7LiMn(0.5)Ni(0.5)O(2) material while maintaining a Mn: Ni ratio of 0.65:0.35; such compounds can be designated generically by the system, LixMn(0.65)Ni(0.35)O(y), for which the end members are 0.3Li(2)MnO(3)center dot 0.7LiMn(0.5)Ni(0.5)O(2) (x = 1.3; y = 2.3), in which the average manganese and nickel oxidation states are 4+ and 2+, respectively, and LiMn1.3Ni0.7O4 (x = 0.5; y = 2) in which the corresponding average oxidation states are expected to lie between 4+ and 3.77+ for Mn, and 2.57+ and 3+ for Ni, respectively. For this study, compounds with a lithium content of x = 1.3, i.e., the parent 'layered-layered' composition, and 1.25 were selected for detailed and comparative investigation, the latter value corresponding to a targeted spinel content of 6%. The beneficial effects of 1) using Mg2+ as a dopant ion and 2) treating the electrode particle surface with an acidic solution of AlF3 to enhance cycling stability, reduce first-cycle capacity loss, and to slow voltage decay on cycling are discussed. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.049301jes] All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据