4.6 Article

Preparation of Li1.03Mn1.97O4 and Li1.06Mn1.94O4 by the Polymer Precursor Method and X-ray, Neutron Diffraction and Electrochemical Studies

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 158, 期 11, 页码 A1231-A1236

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.074111jes

关键词

-

资金

  1. Magnquench Pte, Singapore
  2. Ministry of Education, Singapore [WBS-R-284-000-076-112]

向作者/读者索取更多资源

The compounds, Li1.03Mn1.97O4 and Li1.06Mn1.94O4 were prepared by the polymer precursor method followed by heat treatment at 650 degrees C for 6 hours in air. X-ray and neutron diffraction, scanning electron microscopy, and the Brunauer-Emmett-Teller surface area and density determination techniques were used to characterise the compounds. The lattice parameters obtained using neutron diffraction data of Li1.03Mn1.97O4 and Li1.06Mn1.94O4 are smaller than the parent LiMn2O4 at a = 8.20717(17) and 8.22899(13) A degrees, respectively. Cyclic voltammetry studies were carried out in the potential range of 3.5-4.4V at scan rate of 0.058 mV/sec. Li-doped LiMn2O4 showed the main cathodic and anodic redox peaks at similar to 3.9/4.0 and similar to 4.1/4.15V, respectively. The reversible charge capacities of Li1.03Mn1.97O4 with an applied current rate of 360 mA g(-1) at the end of 2(nd) and 230(th) cycle are 88 and 83 (+/- 3) mAh g(-1), respectively. At a current rate of 600 mA g(-1) these charge capacities are 67 and 61 (+/- 3) mAh g(-1), respectively. Li1.06Mn1.94O4 shows a capacity of 64 and 62 (+/- 3) mAh g(-1) at the end of 2(nd) and 100(th) cycles, respectively, at a current rate of 360 mA g(-1). (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.074111jes] All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据