4.6 Article

Modeling the Electrochemical Impedance Spectra of Electroactive Pseudocapacitor Materials

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 158, 期 6, 页码 A678-A688

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.3561427

关键词

-

资金

  1. Sandia National Laboratories
  2. United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

向作者/读者索取更多资源

Measured electrochemical impedance spectra of porous electrodes comprised of redox-active ruthenium oxide and inert niobium hydroxide are compared with the results of structurally consistent mathematical models describing coupled processes of electron transport in the solid matrix, ion transport in the electrolyte, proton transport within the ruthenium oxide particles, and redox reaction on particle surfaces. Addition of moderate amounts of niobium to crystalline ruthenium oxide is found to improve the frequency response due to enhanced intraparticle proton transport. However, excessive niobium reduces ion and electron transport through the electrode thickness, reducing the available capacitance. Thus, an optimum composition is needed to achieve the best balance in transport properties. Near this optimum, the intraparticle proton transport undergoes a transition from a constant phase element (CPE) response for Ru-rich materials to a classical Warburg diffusion response for Nb-rich compositions. The CPE regime is analyzed in detail to identify fractal-like structures as well as alternative radial distributions of intraparticle proton diffusivity consistent with measured response. The models involving variations in radial diffusivity appear most probable and have nearly exponential decreases in radial diffusivity with distance from particle surfaces similar to a Debye distribution of charge carriers in an electric double layer. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3561427]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据