4.6 Article

Particle Size Effect of Silver Nanoparticles Decorated Single Walled Carbon Nanotube Electrode for Supercapacitors

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 157, 期 2, 页码 A179-A184

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.3267874

关键词

binding energy; carbon nanotubes; contact resistance; electrochemical electrodes; electrochemical impedance spectroscopy; nanofabrication; nanoparticles; particle size; precipitation (physical chemistry); silver; supercapacitors; transmission electron microscopy; voltammetry (chemical analysis); X-ray diffraction; X-ray photoelectron spectra

向作者/读者索取更多资源

Well dispersed silver nanoparticles (AgNPs) of different sizes (1-13 nm) on single walled carbon nanotubes (SWCNTs) were synthesized by a facile room-temperature deposition-precipitation process. The morphology and microstructure of samples examined by the transmission electron microscopy showed a monodispersed silver particle decorated SWCNT of 2 wt % as determined by the Rietveld phase analysis of powder X-ray diffraction patterns. The chemical state of silver determined from the binding energies of high resolution Ag 3d peaks from X-ray photoelectron spectroscopy revealed a silver (Ag(0)) oxidation state. Electrochemical properties were studied using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance studies. Silver decorated SWCNTs demonstrated to be effective bifunctional charge collectors and active electrode materials for a supercapacitor, exhibiting a higher specific capacitance (106 F g(-1)) compared to pristine SWCNT (47 F g(-1)). An enhancement observed with AgNP decoration is highly size-dependent and is related to the improved intertube contact resistance, electroactive surface considerations, as well as the participation of Ag in a faradaic reaction induced pseudocapacitance. Decorating the SWCNT with 1 nm AgNP doubled the energy density of the device, which on charge-discharge cycling retained 84% of the initial capacitance at the end of 8000 cycles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据