4.6 Article

Electrochemical Shock of Intercalation Electrodes: A Fracture Mechanics Analysis

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 157, 期 10, 页码 A1052-A1059

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.3464773

关键词

-

资金

  1. U.S. Department of Energy, Basic Energy Sciences [DE-SC0002633]
  2. National Science Foundation

向作者/读者索取更多资源

Fracture of electrode particles due to diffusion-induced stress has been implicated as a possible mechanism for capacity fade and impedance growth in lithium-ion batteries. In brittle materials, including many lithium intercalation materials, knowledge of the stress profile is necessary but insufficient to predict fracture events. We derive a fracture mechanics failure criterion for individual electrode particles and demonstrate its utility with a model system, galvanostatic charging of LixMn2O4. Fracture mechanics predicts a critical C-rate above which active particles fracture; this critical C-rate decreases with increasing particle size. We produce an electrochemical shock map, a graphical tool that shows regimes of failure depending on C-rate, particle size, and the material's inherent fracture toughness K-Ic. Fracture dynamics are sensitive to the gradient of diffusion-induced stresses at the crack tip; as a consequence, small initial flaws grow unstably and are therefore potentially more damaging than larger initial flaws, which grow stably. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3464773] All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据