4.6 Article

Multimodal Physics-Based Aging Model for Life Prediction of Li-Ion Batteries

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 156, 期 3, 页码 A145-A153

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.3043429

关键词

-

资金

  1. E.U.

向作者/读者索取更多资源

An isothermal, multimodal, physics-based aging model for life prediction of Li-ion batteries is developed, for which a solvent decomposition reaction leading to the growth of a solid electrolyte interphase (SEI) at the carbonaceous anode material is considered as the source of capacity fade. The rate of SEI film growth depends on both solvent diffusion through the SEI film and solvent-reduction kinetics at the carbon surface. The model is able to simulate a wide variety of battery aging profiles. e.g., open-circuit and constant-voltage storage, charge/discharge cycling. etc. An analysis of capacity-fade data from the literature reveals that the same set of aging parameters may be used for predicting cycling and constant-voltage storage. The use of this set of parameters for predicting storage under open-circuit voltage points out that part of the self-discharge is reversible. (C) 2008 The Electrochemical Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据