4.6 Article

Oxygen nonstoichiometry and phase transitions in LiMn1.5Ni0.5O4-delta

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 155, 期 4, 页码 A282-A291

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.2832650

关键词

-

资金

  1. EPSRC [EP/G005001/1] Funding Source: UKRI
  2. Engineering and Physical Sciences Research Council [EP/G005001/1] Funding Source: researchfish

向作者/读者索取更多资源

Crystal structure and oxygen stoichiometry in LiMn1.5Ni0.5O4-delta, a potential lithium-battery cathode, vary with temperature, as observed in samples quenched from different temperatures and by in situ diffraction and thermogravimetry techniques. When prepared in high O-2 pressure, this cation-ordered spinel is oxygen-stoichiometric, delta = 0, space group P4(3)32. Upon heating between 650 and 680 C, increasing oxygen deficiency occurs exclusively in MnO6 octahedra and Mn-O-Mn bonds, which induces a volume increase of the 12d octahedra, a reduction of Mn as shown by X-ray absorption near-edge structure, equalization of Mn-O and Ni-O bond lengths, and disordering of Mn, Ni on octahedral sites. Hence, the transformation to space group Fd (3) over barm, shown by Rietveld refinement of variable-temperature neutron diffraction data, is a direct consequence of oxygen loss from the structure. On further oxygen loss, a second phase transformation occurs to give a cation-deficient cubic rock salt phase, delta similar to 0.65, at 950 degrees C, which loses more oxygen at higher temperatures until, at 1100 degrees C, the material is essentially a stoichiometric, single-phase cation-disordered rock salt, space group Fm (3) over barm. A second spinel phase persists in small amounts from 950 to 1100 degrees C. Differences in electrochemical behavior depend on sample preparation and correlate with the oxygen content of LiMn1.5Ni0.5O4-delta when used as a cathode in Li test cells. (c) 2008 The Electrochemical Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据