4.6 Article

Porous carbon/tin (IV) oxide monoliths as anodes for lithium-ion batteries

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 155, 期 9, 页码 A658-A663

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.2953497

关键词

-

向作者/读者索取更多资源

A monolithic, three-dimensionally ordered macroporous/mesoporous carbon/tin (IV) oxide (3DOM/m C/SnO(2)) nanocomposite was prepared and tested as an anode material for lithium-ion batteries. A macro-/mesoporous glassy carbon (3DOM/m C) monolith was first synthesized from a triconstituent precursor, using a polymer colloidal crystal and a nonionic surfactant as the templates for macropores and mesopores, respectively. Tin (IV) oxide nanocrystals were then introduced into the mesopores of the carbon monolith via an infiltration-hydrolysis process while maintaining connections between macropores. The composite electrode exhibited superior reversible lithium capacity over a carbon/tin dioxide electrode without any designed mesostructure and also over similarly templated glassy carbon electrodes lacking the tin oxide component. The initial discharge capacity was 472 mAh g(-1) and remained above 292 mAh g(-1) for 100 cycles at 50 mA g(-1). The formation of stable solid-electrolyte interphase layers contributed to the good cycleability of 3DOM/m C/SnO(2). The structural and morphological changes of the electrode after cycling were evaluated by scanning and transmission electron microscopy and by X-ray diffraction. (C) 2008 The Electrochemical Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据