4.4 Article

Numerical investigations on magnetic field modeling for Carreau non-Newtonian fluid flow past an isothermal sphere

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s40430-018-1385-0

关键词

Magnetohydrodynamics; Carreau fluid; Keller-Box method; Velocity slip; Temperature jump

资金

  1. Tata Consultancy Services (TCS) Miami FL, USA

向作者/读者索取更多资源

In the current study, the effects of radial magnetic field, slip and jump conditions on the steady two-dimensional free convective boundary layer flow over an external surface of an isothermal sphere for an electro-conductive polymer are numerically studied. It is assumed that the studied fluid has a non-Newtonian rheological behavior and follows the Carreau fluid model. In this investigation, the formulation of the Carreau fluid model has been used first time for describing the present boundary layer problem, and then the resulting partial differential equations are transformed to ordinary differential equations by using non-similarity transformations. The obtained ordinary differential equations are solved numerically by a well-known method named as Keller-Box method. The finding results show that a weak elevation in temperature is accompanied with the increase in the Carreau fluid parameter, whereas a significant acceleration in the flow is computed near the sphere surface. It is shown also that an increase in the thermal slip parameter allows to strongly decrease both the skin friction coefficient and the local Nusselt number. The skin friction coefficient is also depressed with increasing magnetic body force parameter. Moreover, it is observed that an increase in the momentum slip parameter allows to decrease the skin friction coefficient, whereas the local Nusselt number is reduced with the increase in the Carreau fluid parameter. It is found also that the skin friction coefficient is increased with greater stream-wise coordinate, whereas the local Nusselt number is reduced with the increase in this parameter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据