4.7 Article

Interfacial control of PVDF-TrFE/SWCNT nanocomposites using P3HT-PMMA block copolymer for ultra-low percolation threshold

期刊

POLYMER
卷 77, 期 -, 页码 55-63

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2015.09.008

关键词

Fluoropolymers; Carbon nanotubes; Block copolymers

资金

  1. International Collaborative R&D Program - Ministry of Trade, Industry, and Energy, (MOTIE, Korea) [N0000678]
  2. Materials Architecturing Research Center of Korea Institute of Science and Technology (KIST)

向作者/读者索取更多资源

Poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE)/SWCNT nanocomposites with ultra-low percolation threshold were prepared by interfacial control using a block copolymer comapatibilizer. For this, a well-defined block copolymer of poly(3-hexylthiophene) (P3HT) and poly(methyl methacrylate) (PMMA) (P3HT-b-PMMA) was synthesized by combination of GRIM and ATRP (M-n = 24 K, M-w/M-n = 1.25), where the P3HT block segment wrapped the SWCNTs by pi-pi interaction and the resulting PMMA block segment dangled from the SWCNTs, which gave de-bundled SWCNTs without any aggregations for over 5 months in most common organic solvents for PMMA. The block copolymer coated SWCNT (TMCNT) was then mixed with PVDF-TrFE to prepare PVDF-TrFE/SWCNT nanocomposites (PVT-TMCNT), which enabled excellent dispersion of SWCNT in a PVDF-TrFE matrix without aggregation due to the miscibility of the PMMA on TMCNT and PVDF-TrFE. Obtained PVT-TMCNT showed large enhancements of the electrical conductivity and the dielectric constant with ultra-low percolation threshold (f(c) = 0.07 wt.%) due to excellent interfacial control by the block copolymer comapatibilizer between SWCNT and PVDF-TrFE. Improved ferroelectric properties of PVT-TMCNT were also observed by an increase of field-induced polarization response, which was almost over 10-times higher than for neat PVDF-TrFE. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据