4.4 Article

The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to Surface-Layer and Cloud-Top Inversion-Layer Moisture Sources

期刊

JOURNAL OF THE ATMOSPHERIC SCIENCES
卷 71, 期 2, 页码 574-595

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JAS-D-13-0179.1

关键词

Arctic; Mixed layer; Stratiform clouds; Energy budget; balance; Water budget; Large eddy simulations

资金

  1. Office of Science (BER), U.S. Department of Energy [DE-FG01-05ER63965]
  2. National Science Foundation [ARC-1023366]
  3. Directorate For Geosciences
  4. Division Of Polar Programs [1023366] Funding Source: National Science Foundation
  5. Directorate For Geosciences
  6. Office of Polar Programs (OPP) [1203902] Funding Source: National Science Foundation

向作者/读者索取更多资源

In this study, a series of idealized large-eddy simulations is used to understand the relative impact of cloud-top and subcloud-layer sources of moisture on the microphysical-radiative-dynamical feedbacks in an Arctic mixed-phase stratocumulus (AMPS) cloud system. This study focuses on a case derived from observations of a persistent single-layer AMPS cloud deck on 8 April 2008 during the Indirect and Semi-Direct Aerosol Campaign near Barrow, Alaska. Moisture and moist static energy budgets are used to examine the potential impact of ice in mixed-phase clouds, specific humidity inversions coincident with temperature inversions as a source of moisture for the cloud system, and the presence of cloud liquid water above the mixed-layer top. This study demonstrates that AMPS have remarkable insensitivity to changes in moisture source. When the overlying air is dried initially, radiative cooling and turbulent entrainment increase moisture import from the surface layer. When the surface layer is dried initially, the system evolves to a state with reduced mixed-layer water vapor and increased surface-layer moisture, reducing the loss of water through precipitation and entrainment of near-surface air. Only when moisture is reduced both above and below the mixed layer does the AMPS decay without reaching a quasi-equilibrium state. A fundamental finding of this study is that, with or without cloud ice and with or without a specific humidity inversion, the cloud layer eventually extends into the temperature inversion producing a precipitation flux as a source of water into the mixed layer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据