4.4 Article

Quantifying the Eddy Feedback and the Persistence of the Zonal Index in an Idealized Atmospheric Model

期刊

JOURNAL OF THE ATMOSPHERIC SCIENCES
卷 66, 期 12, 页码 3707-3720

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/2009JAS3165.1

关键词

-

资金

  1. Directorate For Geosciences
  2. Div Atmospheric & Geospace Sciences [0808831] Funding Source: National Science Foundation

向作者/读者索取更多资源

An idealized atmospheric model is employed to quantify the strength of the eddy feedback and the persistence of the zonal index. The strength of the surface frictional damping on the zonal index is varied, and an external zonal momentum forcing is included to compensate for the momentum change associated with the friction change such that the climatological jet latitude and shape are unchanged. The model can generate a nearly identical climatology and leading mode of the zonal mean zonal wind for different frictional damping rates, except when the jet undergoes a regime transition. For those experiments without a regime transition, as the surface friction is increased, the strength of eddy feedback is enhanced but the zonal index becomes less persistent. A simple feedback model suggests that the e-folding decorrelation time scale of the zonal index can be determined by the frictional damping rate and the strength of eddy feedback. The strength of eddy feedback is found to be related to the instantaneous vertical wind shears near the surface controlled by the frictional damping. Furthermore, the climate response to an external zonal torque is proportional to the decorrelation time scale, although the simple prediction used here overestimates the climate response by a factor of 2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据