4.4 Article

Composite Life Cycle of Maritime Tropical Mesoscale Convective Systems in Scatterometer and Microwave Satellite Observations

期刊

JOURNAL OF THE ATMOSPHERIC SCIENCES
卷 66, 期 1, 页码 199-208

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/2008JAS2746.1

关键词

-

向作者/读者索取更多资源

This study examines scatterometer-observed surface wind divergence and vorticity, along with precipitable water (PW), across the life cycle of tropical maritime mesoscale convective systems (MCSs) as resolved in 0.5 degrees data. Simple composites were constructed around first appearances of cold (<210 K) cloud tops in infrared (IR) data at 3-hourly resolution. Many thousands of such events from the tropical Indo-Pacific in 2000 were used. Composites of subpopulations were also constructed by subdividing the dataset according to IR event size and duration, as well as by prevailing values of PW and vorticity at a 5 degrees scale. The composite MCS life cycle here spans about a day and covers a few hundred kilometers, with a remarkable sameness across subpopulations. Surface wind convergence and PW buildup lead cold cloud appearance by many hours. Afterward there are many hours of divergence, indicative of downdrafts. Contrary to motivating hypotheses, the strength of this divergence relative to convergence is scarcely different in humid and dry subpopulation composites. Normalized time series of composite vorticity show an evolution that seems consistent with vortex stretching by this convergence-divergence cycle, with peak vorticity near the end of the period of convergence (3 h prior to cold cloud appearance). In rotating conditions, the common 1-day MCS life cycle is superposed on large-scale mean vorticity and convergence, approximately in proportion, which appear to be well scale-separated (covering the whole of the 48-h and 5 degrees-10 degrees averages) and are as strong as or stronger than the MCS signature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据