4.4 Article

Aerosol-cloud interactions in a mesoscale model. Part I: Sensitivity to activation and collision-coalescence

期刊

JOURNAL OF THE ATMOSPHERIC SCIENCES
卷 65, 期 2, 页码 289-308

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/2007JAS2207.1

关键词

-

向作者/读者索取更多资源

High-resolution numerical simulations of the aerosol-cloud feedbacks are performed with a mesoscale model. The multimodal aerosol species, added to the model, and the cloud species were represented by two spectral moments. The aerosol sources include particle activation, solute transfer between drops due to collision and coalescence of drops, and particle regeneration. A summertime case was simulated consisting of a cold frontal cloud system and a postfrontal stratus. Experiments with both simple and mechanistic activation parameterization of aerosol and with one and two aerosol modes were performed. Verification was made of the stratus properties against measurements taken during the Radiation Aerosol and Cloud Experiment ( RACE). The results demonstrate a significant sensitivity of the stratus and of the frontal system to the aerosol and a moderate impact on the particle spectrum of drop collision-coalescence. The stratus simulation with mechanistic activation and unimodal aerosol showed the best agreement of droplet concentration with the observations, and the simulations with mechanistic activation and a bimodal aerosol and with simple activation underestimated the droplet concentration. A similar high sensitivity was found for the frontal precipitation intensity. Drop collision-coalescence in the frontal system was found to have an impact on the particle mean radius whose magnitude amounted to 10% and 15% for one and multiple cloud cycles, respectively. This impact was also found to be highly variable in space. The modified particle spectrum, following activation in clouds, was found to increase droplet concentration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据