4.7 Article

Nephropathy and Elevated BP in Mice with Podocyte-Specific NADPH Oxidase 5 Expression

期刊

出版社

AMER SOC NEPHROLOGY
DOI: 10.1681/ASN.2013040371

关键词

-

资金

  1. Kidney Foundation of Canada
  2. National Health and Medical Research Council of Australia
  3. Juvenile Diabetes Research Foundation
  4. Canadian Institutes of Health Research
  5. British Heart Foundation [RG/13/7/30099] Funding Source: researchfish

向作者/读者索取更多资源

NADPH oxidase (Nox) enzymes are a significant source of reactive oxygen species, which contribute to glomerular podocyte dysfunction. Although studies have implicated Nox1, -2, and -4 in several glomerulopathies, including diabetic nephropathy, little is known regarding the role of Nox5 in this context. We examined Nox5 expression and regulation in kidney biopsies from diabetic patients, cultured human podocytes, and a novel mouse model. Nox5 expression increased in human diabetic glomeruli compared with nondiabetic glomeruli. Stimulation with angiotensin II upregulated Nox5 expression in human podocyte cultures and increased reactive oxygen species generation. siRNA-mediated Nox5 knockdown inhibited angiotensin II-stimulated production of reactive oxygen species and altered podocyte cytoskeletal dynamics, resulting in an Rac-mediated motile phenotype. Because the Nox5 gene is absent in rodents, we generated transgenic mice expressing human Nox5 in a podocyte-specific manner (Nox5(pod+)). Nox5(pod+) mice exhibited early onset albuminuria, podocyte foot process effacement, and elevated systolic BP. Subjecting Nox5(pod+) mice to streptozotocin-induced diabetes further exacerbated these changes. Our data show that renal Nox5 is upregulated in human diabetic nephropathy and may alter filtration barrier function and systolic BP through the production of reactive oxygen species. These findings provide the first evidence that podocyte Nox5 has an important role in impaired renal function and hypertension.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据