4.7 Article

Downregulation of MicroRNA-30 Facilitates Podocyte Injury and Is Prevented by Glucocorticoids

期刊

出版社

AMER SOC NEPHROLOGY
DOI: 10.1681/ASN.2012111101

关键词

-

资金

  1. National Basic Research Program of China (973 Program) [2012CB517600, 2012CB517606]
  2. Natural Science Foundation of Jiangsu Province [BK2011020, BK2012054]

向作者/读者索取更多资源

MicroRNAs (miRNAs) are essential for podocyte homeostasis, and the miR-30 family may be responsible for this action. However, the exact roles and clinical relevance of miR-30s remain unknown. In this study, we examined the expression of the miR-30 family in the podocytes of patients with FSGS and found that all members are downregulated. Treating cultured human podocytes with TGF-, LPS, or puromycin aminonucleoside (PAN) also downregulated the miR-30 family. Podocyte cytoskeletal damage and apoptosis caused by treatment with TGF- or PAN were ameliorated by exogenous miR-30 expression and aggravated by miR-30 knockdown. Moreover, we found that miR-30s exert their protective roles by direct inhibition of Notch1 and p53, which mediate podocyte injury. In rats, treatment with PAN substantially downregulated podocyte miR-30s and induced proteinuria and podocyte injury; however, transfer of exogenous miR-30a to podocytes of PAN-treated rats ameliorated proteinuria and podocyte injury and reduced Notch1 activation. Finally, we demonstrated that glucocorticoid treatment maintains miR-30 expression in cultured podocytes treated with TGF-, LPS, or PAN and in the podocytes of PAN-treated rats. Glucocorticoid-sustained miR-30 expression associated with reduced Notch1 activation and alleviated podocyte damage. Taken together, these findings demonstrate that miR-30s protect podocytes by targeting Notch1 and p53 and that the loss of miR-30s facilitates podocyte injury. In addition, sustained miR-30 expression may be a novel mechanism underlying the therapeutic effectiveness of glucocorticoids in treating podocytopathy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据