4.7 Article

Epac-Rap Signaling Reduces Cellular Stress and Ischemia-induced Kidney Failure

期刊

出版社

AMER SOC NEPHROLOGY
DOI: 10.1681/ASN.2010040423

关键词

-

资金

  1. Dutch Kidney Foundation
  2. Netherlands Toxicogenomics Center/The Netherlands Genomics Initiative

向作者/读者索取更多资源

Renal ischemia-reperfusion injury is associated with the loss of tubular epithelial cell-cell and cell-matrix interactions which contribute to renal failure. The Epac-Rap signaling pathway is a potent regulator of cell-cell and cell-matrix adhesion. The cyclic AMP analogue 8-pCPT-2'-O-Me-cAMP has been shown to selectively activate Epac, whereas the addition of an acetoxymethyl (AM) ester to 8-pCPT-2'-O-Me-cAMP enhanced in vitro cellular uptake. Here we demonstrate that pharmacological activation of Epac-Rap signaling using acetoxymethy1-8-pCPT-2'-O-Me-cAMP preserves cell adhesions during hypoxia in vitro, maintaining the barrier function of the epithelial monolayer. Intrarenal administration in vivo of 8-pCPT-2'-O-Me-cAMP also reduced renal failure in a mouse model for ischemia-reperfusion injury. This was accompanied by decreased expression of the tubular cell stress marker clusterin-a, and lateral expression of beta-catenin after ischemia indicative of sustained tubular barrier function. Our study emphasizes the undervalued importance of maintaining tubular epithelial cell adhesion in renal ischemia and demonstrates the potential of pharmacological modulation of cell adhesion as a new therapeutic strategy to reduce the extent of injury in kidney disease and transplantation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据