4.7 Article

Reduction of Renal Superoxide Dismutase in Progressive Diabetic Nephropathy

期刊

JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY
卷 20, 期 6, 页码 1303-1313

出版社

AMER SOC NEPHROLOGY
DOI: 10.1681/ASN.2008080844

关键词

-

资金

  1. Ministry of Education, Science, and Culture, Japan [20590943]
  2. National Institutes of Health [DK39261, DK61018]
  3. Grants-in-Aid for Scientific Research [20590943] Funding Source: KAKEN

向作者/读者索取更多资源

Superoxide excess plays a central role in tissue damage that results from diabetes, but the mechanisms of superoxide overproduction in diabetic nephropathy (DN) are incompletely understood. In the present study, we investigated the enzyme superoxide dismutase (SOD), a major defender against superoxide, in the kidneys during the development of murine DN. We assessed SOD activity and the expression of SOD isoforms in the kidneys of two diabetic mouse models (C57BL/6-Akita and KK/Ta-Akita) that exhibit comparable levels of hyperglycemia but different susceptibility to DN. We observed down-regulation of cytosolic CuZn-SOD (SOD1) and extracellular CuZn-SOD (SOD3), but not mitochondrial Mn-SOD (SOD2), in the kidney of KK/Ta-Akita mice which exhibit progressive DN. In contrast, we did not detect a change in renal SOD expression in DN-resistant C57BL/6-Akita mice. Consistent with these findings, there was a significant reduction in total SOD activity in the kidney of KK/Ta-Akita mice compared with C57BL/6-Akita mice. Finally, treatment of KK/Ta-Akita mice with a SOD mimetic, tempol, ameliorated the nephropathic changes in KK/Ta-Akita mice without altering the level of hyperglycemia. Collectively, these results indicate that down-regulation of renal SOD1 and SOD3 may play a key role in the pathogenesis of DN.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据