4.7 Article

Cystin Localizes to Primary Cilia via Membrane Microdomains and a Targeting Motif

期刊

JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY
卷 20, 期 12, 页码 2570-2580

出版社

AMER SOC NEPHROLOGY
DOI: 10.1681/ASN.2009020188

关键词

-

资金

  1. National Institutes of Health [DK55534]

向作者/读者索取更多资源

Primary cilia are dynamic, complex structures that contain >500 proteins, including several related to polycystic kidney disease. How these proteins target to cilia and assemble is unknown. We previously identified Cys1 as the gene responsible for disease in Cys1(cpk) mice, a mouse model of autosomal recessive polycystic kidney disease; this gene encodes cystin, a 145-amino acid cilium-associated protein. Here, we characterized the localization of cystin in the embryonic kidney and liver, in isolated renal collecting ducts, and in an inner medullary collecting duct mouse cell line. Because endogenous levels of cystin expression are low, we generated inner medullary collecting duct cell lines that stably express enhanced green fluorescence protein-tagged constructs of wild-type cystin or various truncation mutants. We determined that cystin is myristoylated at its G2 residue and that N-myristoylated cystin fractionates with membrane microdomains. Furthermore, the N-myristoylation signal is necessary but not sufficient to target cystin to the primary cilium. Analysis of deletion and chimeric constructs identified an AxEGG motif that is necessary to target and retain cystin in the cilium. Derangement of these localization motifs may lead to cystic kidney disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据