4.5 Article

Density Functional Theory and Mass Spectrometry of Phthalate Fragmentations Mechanisms: Modeling Hyperconjugated Carbocation and Radical Cation Complexes with Neutral Molecules

期刊

出版社

SPRINGER
DOI: 10.1007/s13361-011-0215-8

关键词

Triple quadrupole mass spectrometry; Protonated phthalic anhydride; Ion molecule complexes; Phthalates; Collision induced dissociation; Hyperconjugated cation; Phthalates; Fragmentation mechanism

资金

  1. United States Army Research Office
  2. United States Department of Energy
  3. Spelman College's office of research resources

向作者/读者索取更多资源

This is the first ab initio study of the energetics of the fragmentation mechanisms of phthalate, by mass spectrometry, leading to protonated phthalic anhydride (m/z 149). Phthalates fragment by two major pathways; namely, the McLafferty+1 rearrangement and the loss of alkoxy. Both pathways involve a carbonyl oxygen attack to the ortho-carbonyl carbon leading to structures with tetrahedral carbon intermediates that eventually give m/z 149. These pathways were studied by collision induced dissociation (CID) using triple quadrupole mass spectrometry. The proposed McLafferty+1 pathway proceeds through a distonic M center dot+, leading to the loss of an allylic-stabilized alkene radical. The McLafferty rearrangement step proceeds through a six-membered ring transition state with a small activation energy ranging 0.4-6.2 kcal/mol; the transfer of a second H from the distonic ion of the rearrangement step proceeds through a radical cation molecule complex. Based on quantum chemical modeling of the cation molecule complexes, two kinds of cation molecule complexes were identified as radical cation molecule complex and hyperconjugated cation molecule complex. This distinction is based on the cation and simplifies future modeling of similar complexes. Optimization of important fragments in these pathways showed cyclized and hydrogen-bonded structures to be favored. An exception was the optimized structure of the protonated phthalic anhydride (m/z 149) that showed a structure with an open anhydride ring.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据