4.5 Article

Peak Coalescence, Spontaneous Loss of Coherence, and Quantification of the Relative Abundances of Two Species in the Plasma Regime: Particle-In-Cell Modeling of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

期刊

出版社

SPRINGER
DOI: 10.1016/j.jasms.2010.06.004

关键词

-

资金

  1. College of Physical and Mathematical Science of Brigham Young University
  2. Copley funding

向作者/读者索取更多资源

Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is often limited by space-charge effects. Previously, particle-in-cell (PIC) simulations have been used to understand these effects on FTICR-MS signals. However, none have extended fully into the space-charge dominated (plasma) regime. We use a two-dimensional (2-D) electrostatic PIC code, which facilitates work at very high number densities at modest computational cost to study FTICR-MS in the plasma regime. In our simulation, we have observed peak coalescence and the rapid loss of signal coherence, two common experimental problems. This demonstrates that a 2-D model can simulate these effects. The 2-D code can handle a larger numbers of particles and finer spatial resolution than can currently be addressed by 3-D models. The PIC method naturally takes into account image charge and space charge effects in trapped-ion mass spectrometry. We found we can quantify the relative abundances of two closely spaced (such as Be-7(+) and Li-7(+)) species in the plasma regime even when their peaks have coalesced. We find that the frequency of the coalesced peak shifts linearly according to the relative abundances of these species. Space charge also affects more widely spaced lines. Singly-ionized (BeH)-Be-7 and Li-7 have two separate peaks in the plasma regime. Both the frequency and peak area vary nonlinearly with their relative abundances. Under some conditions, the signal exhibited a rapid loss of coherence. We found that this is due to a high order diocotron instability growing in the ion cloud. (J Am Soc Mass Spectrom 2010, 21, 1712-1719) (C) 2010 American Society for Mass Spectrometry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据