4.5 Article Proceedings Paper

IRPD Spectroscopy and Ensemble Measurements: Effects of Different Data Acquisition and Analysis Methods

期刊

出版社

SPRINGER
DOI: 10.1016/j.jasms.2010.01.010

关键词

-

向作者/读者索取更多资源

Three different commonly used infrared photodissociation (IRPD) spectroscopy acquisition and analysis methods are described, and results from these methods are compared using the same dataset for an extensively hydrated metal cation, La3+(H2O)(36). Using the first-order laser-induced photodissociation rate constant as an IRPD intensity has several advantages over photodissociation yield and depletion/appearance methods in that intensities can be more directly compared with calculated infrared absorption spectra, and the intensities can be readily corrected for changes in laser power or irradiation times used for optimum data acquisition at each frequency. Extending IRPD spectroscopy to large clusters can be complicated when blackbody infrared radiative dissociation competes strongly with laser-induced photodissociation. A new method to obtain IRPD spectra of single precursor ions or ensembles of precursor ions that is nearly equivalent to the photodissociation rate constant method for single precursor ions is demonstrated. The ensemble IRPD spectra represent the average structure of clusters of a given size range, and this method has the advantage that spectra with improved signal-to-noise ratios can be obtained with no increase in data acquisition time. Results using this new method for a precursor ensemble consisting of La3+(H2O)(35-37) are compared with results for La3+(H2O)(36). (J Am Soc Mass Spectrom 2010, 21, 800-809) (C) 2010 Published by Elsevier Inc. on behalf of American Society for Mass Spectrometry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据