4.3 Article

Docosahexaenoic acid is more stable to oxidation when located at the sn-2 position of triacylglycerol compared to sn-1(3)

期刊

出版社

SPRINGER
DOI: 10.1007/s11746-008-1224-z

关键词

auto-oxidation; docosahexaenoic acid; omega-3 fatty acid; oxidative stability; regio-isomer; triacylglycerol

向作者/读者索取更多资源

Regio-isomeric effects on the oxidative stability of triacylglycerols (TAG) containing docosahexaenoic acid (DHA) were investigated using two pairs of regio-isomerically pure TAG, namely 1,3-dihexadecanoyl-2-(4,7,10,13,16,19-docosahexaenoyl)glycerol (PDP)/1,2-dihexadecanoyl-3-(4,7,10,13,16,19-docosahexaenoyl)glycerol (PPD) and 1,3-dioctadecenoyl-2-(4,7,10,13,16,19-docosahexaenoyl)glycerol (ODO)/1,2-dioctadecenoyl-3-(4,7,10,13,16,19-docosahexaenoyl)glycerol (OOD) where P, O, and D represent palmitic acid, oleic acid, and DHA respectively. Each pair of regio-isomers was subjected to accelerated auto-oxidation (at 40 or 50 C inside a dark oven). In each case, the TAG oxidized more slowly when DHA was located at the sn-2 position (PDP and ODO) compared to the sn-1(3) position (PPD and OOD), as evidenced by slower development of peroxide value, slower depletion of DHA, and slower generation of secondary oxidation products propanal and trans, trans-2,4-heptadienal. The positional effect on auto-oxidation was more pronounced when DHA occurred in combination with oleic acid than with palmitic acid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据