4.6 Article

Exciton dynamics in a site-controlled quantum dot coupled to a photonic crystal cavity

期刊

APPLIED PHYSICS LETTERS
卷 107, 期 19, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4935352

关键词

-

资金

  1. Swiss National Science Foundation
  2. ERA-NET project QUADSYS

向作者/读者索取更多资源

Exciton and cavity mode (CM) dynamics in site-controlled pyramidal quantum dots (QDs), integrated with linear photonic crystal membrane cavities, are investigated for a range of temperatures and photo-excitation power levels. The absence of spurious multi-excitonic effects, normally observed in similar structures based on self-assembled QDs, permits the observation of effects intrinsic to two-level systems embedded in a solid state matrix and interacting with optical cavity modes. The coupled exciton and CM dynamics follow the same trend, indicating that the CM is fed only by the exciton transition. The Purcell reduction of the QD and CM decay times is reproduced well by a theoretical model that includes exciton linewidth broadening and temperature dependent non-radiative processes, from which we extract a Purcell factor of 17 +/- 65. For excitation powers above QD saturation, we show the influence of quantum wire barrier states at short delay time, and demonstrate the absence of multiexcitonic background emission. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据