4.7 Article

Global Cardiovascular Reserve Dysfunction in Heart Failure With Preserved Ejection Fraction

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jacc.2010.03.077

关键词

contractility; endothelial function; exercise; heart failure; hypertension; vasodilation

资金

  1. Mayo Clinic Center for Translational Science Activities
  2. National Institutes of Health [UL RR024150]
  3. Marie Ingalls Career Development Award in Cardiovascular Research

向作者/读者索取更多资源

Objectives The purpose of this study was to comprehensively examine cardiovascular reserve function with exercise in patients with heart failure and preserved ejection fraction (HFpEF). Background Optimal exercise performance requires an integrated physiologic response, with coordinated increases in heart rate, contractility, lusitropy, arterial vasodilation, endothelial function, and venous return. Cardiac and vascular responses are coupled, and abnormalities in several components may interact to promote exertional intolerance in HFpEF. Methods Subjects with HFpEF (n = 21), hypertension without heart failure (n = 19), and no cardiovascular disease (control, n = 10) were studied before and during exercise with characterization of cardiovascular reserve function by Doppler echocardiography, peripheral arterial tonometry, and gas exchange. Results Exercise capacity and tolerance were reduced in HFpEF compared with hypertensive subjects and controls, with lower VO(2) and cardiac index at peak, and more severe dyspnea and fatigue at matched low-level workloads. Endothelial function was impaired in HFpEF and in hypertensive subjects as compared with controls. However, blunted exercise-induced increases in chronotropy, contractility, and vasodilation were unique to HFpEF and resulted in impaired dynamic ventricular-arterial coupling responses during exercise. Exercise capacity and symptoms of exertional intolerance were correlated with abnormalities in each component of cardiovascular reserve function, and HFpEF subjects were more likely to display multiple abnormalities in reserve. Conclusions HFpEF is characterized by depressed reserve capacity involving multiple domains of cardiovascular function, which contribute in an integrated fashion to produce exercise limitation. Appreciation of the global nature of reserve dysfunction in HFpEF will better inform optimal design for future diagnostic and therapeutic strategies. (J Am Coll Cardiol 2010;56:845-54) (C) 2010 by the American College of Cardiology Foundation

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据