4.8 Article

Zeolite-Encapsulated Pt Nanoparticles for Tandem Catalysis

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 140, 期 41, 页码 13514-13520

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.8b09568

关键词

-

资金

  1. Catalysis Center for Energy Innovation, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001004]
  2. U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704]

向作者/读者索取更多资源

Encapsulation of metal nanoparticles in a zeolite matrix is a promising route to integrate multiple sequential reactions into a one-pot and one-step tandem catalytic reaction. We report a cationic polymer-assisted synthetic strategy to encapsulate Pt nanoparticles (NPs) into MFI zeolites. Degrees of encapsulation of Pt NPs in the synthesized catalysts exceeding 90% were demonstrated via kinetic studies of model reactions involving substrates with different molecular dimensions. HZSM-5 zeolite-encapsulated Pt NPs are able to selectively mediate the tandem aldol condensation and hydrogenation of furfural and acetone to form hydrogenated C-8 products with a combined yield of 87%. In contrast, hydrogenation and decarbonylation of furfural dominate on Pt NPs supported on HZSM-5 at otherwise identical conditions. The high selectivity toward the tandem reaction on the encapsulated catalyst is attributed to the distribution of metal and acid sites, which limits the access of furfural to Pt sites and promotes the acid-catalyzed aldol condensation. This is the first demonstration that the product distribution in a tandem reaction is manipulated by tailoring the architecture of catalytic materials via encapsulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据